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Abstract Indirect approaches to estimation of biomass

factors are often applied to measure carbon flux in the

forestry sector. An assumption underlying a country-level

carbon stock estimate is the representativeness of these

factors. Although intensive studies have been conducted to

quantify biomass factors, each study typically covers a

limited geographic area. The goal of this study was to

employ a meta-analysis approach to develop regional bio-

mass factors for Quercus mongolica forests in South Korea.

The biomass factors of interest were biomass conversion

and expansion factor (BCEF), biomass expansion factor

(BEF) and root-to-shoot ratio (RSR). Our objectives were

to select probability density functions (PDFs) that best

fitted the three biomass factors and to quantify their means

and uncertainties. A total of 12 scientific publications were

selected as data sources based on a set of criteria. From

these publications we chose 52 study sites spread out

across South Korea. The statistical model for the meta-

analysis was a multilevel model with publication (data

source) as the nesting factor specified under the Bayesian

framework. Gamma, Log-normal and Weibull PDFs were

evaluated. The Log-normal PDF yielded the best quanti-

tative and qualitative fit for the three biomass factors.

However, a poor fit of the PDF to the long right tail of

observed BEF and RSR distributions was apparent. The

median posterior estimates for means and 95 % credible

intervals for BCEF, BEF and RSR across all 12 publica-

tions were 1.016 (0.800–1.299), 1.414 (1.304–1.560) and

0.260 (0.200–0.335), respectively. The Log-normal PDF

proved useful for estimating carbon stock of Q. mongolica

forests on a regional scale and for uncertainty analysis

based on Monte Carlo simulation.

Keywords Uncertainty analysis � Monte Carlo

simulation � Bayesian hierarchical model � Nesting
structure � Biomass estimation

Introduction

Estimation of carbon flux has become important for

countries seeking to comply with their agreements under

the United Nations Framework Convention on Climate

Change (UNFCCC) and to implement their commitments

under the Kyoto Protocol (Van Camp et al. 2004). Unlike

in other sectors, direct measurement of carbon flux in the

land use, land use change and forestry (LULUCF) sector is

difficult, and indirect methods often must be used (Somo-

gyi et al. 2007). One common indirect method is to first

estimate forest biomass and then convert it to carbon stock

based on the carbon fraction. Calculation of forest biomass
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involves converting forest inventory estimates of the vol-

ume of growing stock by using conversion techniques such

as biomass factors and biomass equations (Jalkanen et al.

2005). Biomass factors convert, expand or reduce stand

volume estimates to biomass estimates, and biomass

equations predict biomass as a function of stand structural

variables (Somogyi et al. 2007). The factor approach is the

Tier 1 method in the Intergovernmental Panel on Climate

Change (IPCC) guidelines (IPCC 2006b), which is adopted

by many countries in their reporting. Hence, reliable esti-

mates of growing stock and biomass factors are crucial for

accurately estimating changes in forest biomass and carbon

stock.

An implicit assumption underlying a country-level car-

bon stock estimate is the representativeness of the growing

stock estimate and biomass factors. Growing stock is

generally derived from a national forest inventory (NFI),

whose design is usually probability-based and covers a

large geographic area (Schroeder et al. 1997). Thus, the

estimate is statistically valid and representative on the

country-level. However, most country NFIs are primarily

intended for monitoring economically interesting wood

volumes for the purpose of making sound management

plans (Van Camp et al. 2004). Furthermore, NFIs generally

do not measure non-commercial tree components such as

branches, foliage and roots (Schroeder et al. 1997). Thus,

biomass factors are relied upon to adequately quantify

above- and below-ground biomass.

Developing representative biomass factors is a chal-

lenging task. Intensive studies have been conducted to

quantify biomass and develop factors, but each study nor-

mally covers a limited geographical range (Schroeder et al.

1997). Due to logistic and cost constraints, most countries

undertake only a few studies at few sites (Van Camp et al.

2004). In some instances, forests with greater than average

biomass for a region tend to be selected for study, which

results in an overestimation of national biomass (Brown

and Lugo 1982; Fang and Wang 2001). Furthermore, bio-

mass factors can vary greatly depending on location and

forest structure (Brown 2002; Návar 2010). Therefore,

applying biomass factors from any single study to predict

country-level biomass is hindered by lack of representa-

tiveness. In contrast, combining information from all

available studies could, by increasing the scope of infer-

ence, enhance the reliability of the biomass factors. The

method of meta-analysis offers an opportunity for such an

analysis.

Meta-analysis is a statistical synthesis of results from a

series of studies (Borenstein et al. 2009). Its application is

widespread in medical and social sciences but less so in

natural science. The process is similar to conducting any

research, i.e., research formulation, data collection, evalu-

ation, analysis and interpretation (Hartung et al. 2008). An

important aspect is unequivocal definition of the population

to which generalization will be made (Hedges 1994). This

will drive the search for relevant sources of information,

many of which will be scientific publications. However,

publication bias due to a lack of reporting on research with

insignificant conclusions has to be taken into account

(Hartung et al. 2008), and analysis will only be meaningful

if information sources have been collected systematically

(Borenstein et al. 2009). A wide range of statistical models

is available to combine published results, and the choice of

model depends on the nature of the underlying problem

(Hartung et al. 2008). In short, successful application of

meta-analysis requires adequate understanding of these

stages.

Several studies illustrated the effort to access a large

number of sources to construct a dataset for meta-analysis

of biomass factors and equations. Teobaldelli et al. (2009)

developed generalized biomass equations as a function of

age, growing stock and site index for various species

groups from two extensive datasets containing a total of

6392 plots. The datasets were from Cannell (1982) cover-

ing temperate forest stands from 46 countries and from

Usoltsev (2001) covering 37 countries in northern Eurasia.

Wirth et al. (2004) compiled a dataset of 688 trees sampled

in 102 forest stands by 19 authors to develop biomass

equations for Norway spruce in central Europe. In an

extensive effort to develop national-scale biomass equa-

tions for 100 tree species in United States, Jenkins et al.

(2003) assembled 318 equations of total biomass and 389

equations of component biomass from 104 publications.

Their generalized biomass equations were implemented in

the FORCARB model to develop the U.S. carbon budget

(Jenkins et al. 2003). In U.K., Levy et al. (2004) developed

landscape-level biomass factors and prediction functions

for 13 coniferous tree species from 2000 sampled trees

covering a range of ages, soil types and site cultivation

methods.

The goal of this study was to use the meta-analysis

approach to develop regional stand-level biomass factors

for Quercus mongolica (Fisch.) forests in South Korea.

This oak species is found in natural deciduous and mixed

forests throughout South Korea (Son et al. 2007). It plays

an important role in increasing biodiversity and wood

production, and has cultural significance across the country

(Li et al. 2010). Hence, estimating carbon stocks in

Q. mongolica forests is relevant to developing the country

carbon budget. The three biomass factors of interest are

biomass conversion and expansion factor (BCEF), biomass

expansion factor (BEF) and root-to-shoot ratio (RSR). The

factors are defined according to IPCC (2006b). BCEF is

defined as the ratio of above-ground biomass to stand

volume (ton/m3), BEF is the ratio of above-ground biomass

to stem biomass, and RSR is the ratio of root biomass to
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above-ground biomass. The latter two factors are dimen-

sionless. The biomass factors are positive continuous

variables, and their distributions are generally skewed

towards low values (Levy et al. 2004). Therefore, a normal

probability density function (PDF) may not be proper and

the biomass factors are usually assumed to be log-normally

distributed. Specification of an appropriate PDF for a bio-

mass factor is important if one wishes to carry out uncer-

tainty analysis using the Monte Carlo simulation approach

recommended by the IPCC (IPCC 2006a). Hence, the two

specific objectives of this study were (1) exploring PDFs

and selecting the one that provided the best fit for each

biomass factor, and (2) quantifying their means and

uncertainties.

Materials and methods

Data

A literature search was carried out to collect publications

on stand-level biomass estimates of Q. mongolica forests.

A set of criteria was laid out to select appropriate publi-

cations to be included in the meta-analysis: (1) forest type,

(2) plot configuration, (3) sample tree selection procedure,

and (4) measurement method. A total of 12 publications

consistent in these selection criteria were included in our

meta-analysis (Table 1). The number of study sites per

publication ranged from 1 to 16 and totalled 52 (Table 1).

The study sites were located either in pure Q. mongolica

forests or in mixed forests with high density of the oak

species. They were distributed across the country (Fig. 1)

and covered a range of elevations (260–1300 m) and stand

ages (6–70 years). All publications established

20 m 9 20 m (0.04 ha) plots with the exception of Park

and Moon (1994) and Park et al. (1996), who established

smaller plots of 10 m 9 10 m (0.01 ha).

The sample tree selection and measurement procedures

were generally identical among the 12 publications. All

trees with diameter at breast height (DBH) C6 cm in a plot

were measured for DBH and height, and 3–6 trees were

destructively sampled for biomass based on the observed

DBH distribution. This ensured the sampled trees repre-

sented stand structure in the plot. Stem, branch and foliage

biomasses were measured, and above-ground biomass was

the sum of the three biomass components. Root biomass

was measured for a subset of the sampled trees. Biomass

equations relating stem, above-ground and root biomasses

to DBH and height were developed and were used to

predict biomasses for the remaining trees in the plot. Stand-

level stem, above-ground and root biomass were estimated

as the sum of all tree biomasses respectively and were

scaled to biomass densities (ton/ha). Not every publication

reported stand volume (m3/ha), which was needed to esti-

mate one of the biomass factors. For those without the

information, stand volume was estimated by multiplying

stand density and mean tree volume, where the latter was

estimated from mean tree dbh and height reported in the

publications using a published volume table (Korea Forest

Service 2009). The stand-level above-ground and stem

biomass for each study site of each publication are pre-

sented in Table S1 (Supplementary Material). The three

stand-level biomass factors—BCEF, BEF and RSR—were

then estimated from the stand biomasses and volume. A

total of 12, 11 and 9 publications were available for esti-

mating BCEF, BEF and RSR, respectively because not all

12 publications reported stem and root biomasses.

Statistical models

The statistical model for the meta-analysis of BCEF, BEF

and RSR was formulated as a multilevel model under the

Bayesian hierarchical model (BHM) framework. A multi-

level model accommodates nesting structure in data. In this

study, publication was chosen as the nesting factor, and

respective study sites were nested under a publication

(Table 1). This accounted for the variation between study

sites within a publication. The multilevel model under

BHM framework also incorporated between-publication

variation. Difference in data collection methods was min-

imized by application of the criteria for selection of pub-

lications. However, other subtle factors specific to each

publication might influence the biomass factor estimates,

e.g., equipment used, field crew experience and field work

conditions. In short, the multilevel BHM model helps us to

derive an average estimate of a biomass factor on a

regional level while accounting for variation between

publications and between study sites within a publication

(Gelman and Hill 2007). The BHM framework has several

advantages. For example, complex random effects can be

easily constructed for a variety of PDFs, and BHM can

accommodate small sample sizes of some publications and

use all available data to gather inferences for them

(Congdon 2006; Gelman and Hill 2007).

BCEF, BEF and RSR are positive continuous variables,

and their frequency distributions indicate positive skew

(Fig. 2). Fitting a Normal PDF to their frequency distri-

butions was unsatisfactory because the fitted PDF failed to

capture the asymmetry and portions of the fitted PDF took

on negative values (Fig. 2). Thus, a PDF that meets the

distributional characteristics of the three biomass factors is

more appropriate. In this study, we chose the Gamma, Log-

normal and Weibull PDFs because of their ability to

accommodate skewed and strictly positive variables. These

PDFs were then specified as multilevel BHM models to

derive regional level BCEF, BEF and RSR.
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Let xij be a biomass factor (BCEF, BEF or RSR) of jth

study site of ith publication, m be the number of publica-

tions for a biomass factor (m = 12, 11 and 9 for BCEF,

BEF and RSR, respectively). Assuming xij followed a

Gamma PDF, let ai and bi be the shape and rate parameters

for the ith publication, respectively; thus, the PDF of xij

was f ðxijÞ ¼ baii x
ai�1
ij expð�bixijÞ=CðaiÞ (Ntzoufras 2009).

The multilevel BHM based on the Gamma PDF was

specified as,

xijjai; bi �C ai; bið Þ
aijAa;Ba �C Aa;Bað Þ
bijAb;Bb �C Ab;Bb

� �

Aa;Ba;Ab;Bb �C 0:001; 0:001ð Þ

ð1Þ

where, C() was a Gamma function. Equation (1) implied

that a Gamma PDF was fitted to each publication with

biomass factor values (xij) from that publication; hence, the

nesting structure. Under the BHM framework, ai and bi
were assumed to follow independent Gamma distributions.

A non-informative Gamma prior distribution was inde-

pendently assigned to each of the hyperparameters (Aa, Ba,

Ab, Bb). In short, the posterior distribution of the parameter

set X = (a, b, Aa, Ba, Ab, Bb) was,

P Xjxð Þ / L xja; bð ÞP ajAa;Bað ÞP bjAb;Bb
� �

P Aað ÞP Bað ÞP Ab
� �

P Bb
� � ð2Þ

where, x for all xij, a = (a1,…, am), b = (b1,…, bm), L(x|a,
b) was a likelihood function, and P(.|.) and P(.) were prior

distributions for parameters and hyperparameters, respec-

tively. The posterior mean biomass factor across all pub-

lications was estimated as (Ntzoufras 2009),

~lx ¼ ~Aa
�
~Ba

� ��
~Ab
�
Bb ð3Þ

with the posterior variance of the biomass factor as,

~r2x ¼ ~Aa
�
~Ba

� ��
~Ab
�
~Bb

� �2 ð4Þ

Secondly for Log-normal PDF, let li be the mean

parameter on a logarithmic-scale and s be the precision

parameter for the ith publication. Thus, the PDF of xij was

specified as f xij
� �

¼
ffiffiffiffiffiffiffiffiffiffi
s=2p

p
x�1
ij exp �s log xij � li

� �2
=2

� �

(Ntzoufras 2009). The multilevel BHM based on the Log-

normal PDF was specified following Ntzoufras (2009) as,

xijjli; s� LN li; sð Þ
lijh;u�N h;uð Þ
h�N 0; 1000000ð Þ
1
� ffiffiffi

s
p

; 1
� ffiffiffiffi

u
p �U 0; 100ð Þ

ð5Þ

where, LN() was Log-normal PDF, N() was Normal PDF,

U() was Uniform PDF. Equation (5) implied that only the

mean parameter l was subjected to the nesting structure.

We attempted to add the nesting structure on the precision

parameter s, but the model was unstable and failed to

converge satisfactorily for the three biomass factors.

Hence, we assumed that s was not influenced by between-

publication variation. The parameter li was assumed to be

normally distributed. Non-informative prior distributions

were independently assigned to h, s and u with h assuming

a Normal distribution, the inverse and square-root of pre-

cision parameter s and hyperparameter u were assumed to

have Uniform distributions following the convention from

Gelman and Hill (2007). In short, the posterior distribution

of the parameter set X = (l, s, h, u) was,

Table 1 List of publications used for meta-analysis of BCEF, BEF and RSR and average characteristics of the study sites in the publications

Publication No. of

study sites

No. of

sample

treesa

Plot

dimension

(m)

Mean

age (year)

Mean stand

density (no/ha)

Mean

DBH (cm)

Mean

height (m)

Mean stand

volume (m3/ha)

Kwon and Lee (2006a) 6 37 20 9 20 52 1325 17.7 13.6 221.8

Kwon and Lee (2006b) 4 25 20 9 20 50 1920 14.8 10.4 196.0

Kwon and Lee (2006c) 12 18 20 9 20 54 1700 16.4 11.9 207.3

Lee and Kwon (2006) 3 23 20 9 20 47 1600 15.5 13.4 193.0

Lee and Park (1987) 1 10 10 9 10 22 1600 12.4 10.2 96.0

Park (2003) 3 27 20 9 20 43 594 18.7 11.0 240.0

Park and Moon (1994) 1 10 20 9 20 36 1040 12.9 9.7 72.0

Park et al. (1996) 1 10 10 9 10 34 705 15.0 11.6 76.0

Park et al. (2005a) 3 30 20 9 20 48 908 14.7 14.5 112.7

Park et al. (2005b) 1 10 20 9 20 36 3175 9.0 12.7 158.0

Song and Lee (1996) 1 10 20 9 20 67 875 24.0 11.8 131.0

KFRI (2010) 16 70 20 9 20 48 – 17.4 11.6 –

a Number of trees sampled for destructive sampling of biomass
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P Xjxð Þ / L xjl; sð ÞP ljh;uð ÞP hð ÞP 1
� ffiffiffi

s
p� �

P 1
� ffiffiffiffi

u
p� �

ð6Þ

where, l = (l1,…, lm). The posterior mean biomass factor

across all publications was estimated as (Ntzoufras 2009),

~lx ¼ exp ~hþ 1=2~s
� �

ð7Þ

with the posterior variance of the biomass factor as,

~r2x ¼ exp 1=~sð Þ � 1ð Þ exp 2~hþ 1=~s
� �

ð8Þ

Lastly assuming xij was distributed as a Weibull PDF, let

vi and ki be the parameters associated with the PDF for the

ith publication. The PDF of xij was specified as f xij
� �

¼
vikix

vi�1
ij expð�kix

vi
ij Þ (Ntzoufras 2009). The multilevel

BHM based on the Weibull PDF was,

xijjvi; ki �WB vi; kið Þ
vijAv;Bv �C Av;Bvð Þ
kijAk;Bk �C Ak;Bkð Þ
Av;Bv;Ak;Bk �C 0:001; 0:001ð Þ

ð9Þ

where, WB() was Weibull PDF. Equation (9) assumed that

both parameters of the Weibull PDF were Gamma dis-

tributed. A non-informative Gamma prior distribution was

independently assigned to each of the hyperparameters (Av,

Bv, Ak, Bk). The resulting posterior distribution of the

parameter set X = (v, k, Av, Bv, Ak, Bk) was,

P Xjxð Þ / L xjv; kð ÞP vjAv;Bvð ÞP kjAk;Bkð Þ
P Avð ÞP Bvð ÞP Akð ÞP Bkð Þ

ð10Þ

where, v = (v1,…, vm) and k = (k1,…, km). The posterior

mean biomass factor across all publications was estimated

as (Ntzoufras 2009),

~lx ¼ ~Ak

�
~Bk

� ��1= ~Av= ~Bvð Þ
C 1þ 1

�
~Av

�
~Bv

� �� �
ð11Þ

with the posterior variance of the biomass factor as,

~r2x ¼ C 1þ 2
�

~Av

�
~Bv

� �� �
� C 1þ 1

�
~Av

�
~Bv

� �� �2h i

~Ak
�
~Bk

� ��2= ~Av= ~Bvð Þ
ð12Þ

Fig. 1 Locations of 52 study sites (black dots) from the 12

publications used for meta-analysis in the Republic of Korea

Fig. 2 Frequency distribution

of published a BCEF, b BEF,

and c RSR. The fitted PDFs are

Normal (gray solid line),

Gamma (black solid line), Log-

normal (black dotted line) and

Weibull (black dashed line).

The peaks of the fitted Weibull

and Gamma PDFs for BEF and

RSR, respectively, are beyond

the scale of the vertical axis and

are not shown
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Model fitting

Modeling was done using the Monte Carlo Markov Chain

(MCMC) simulation in WinBUGS (Lunn et al. 2000). A

common algorithm to run MCMC simulation is the Gibbs

sampler introduced by Metropolis et al. (Metropolis et al.

1953). The general process of the algorithm is: (1) start

with initial values for all parameters, (2) choose the num-

ber of iterations, (3) at each iteration, update one parameter

at a time by taking a random simulation draw given the

data and the current estimates of all other parameters, and

(4) once all iterations are completed, evaluate the chain for

convergence (Gelman and Hill 2007). For this study, two

disparate sets of initial values were used. The MCMC

simulation was run with 300,000 iterations and a lag of 5 to

reduce possible autocorrelation between the MCMC runs.

At the end of the run, values from the initial 10,000 iter-

ations were dropped, and MCMC samples for some

parameters were thinned to further reduce autocorrelation.

The model convergence was judged from: (1) trace and

history plots of the MCMC samples, (2) the Brooks–Gel-

man–Rubin (BGR) statistic (Brooks and Gelman 1998),

and (3) the Monte Carlo (MC) error of an estimated

parameter. Convergence of a fitted model was confirmed if:

(1) the BGR statistic was \1.05, (2) the MC error was

\2 % of the posterior standard deviation of the estimated

parameter, and (3) the trace and history plots showed

MCMC samples to be within a parallel zone without strong

seasonality (Ntzoufras 2009).

A total of 9 analyses were carried out using the com-

bination of three PDFs (Gamma, Log-normal and Weibull)

and three biomass factors (BCEF, BEF and RSR).

Modeling of BEF raised a location issue because the lower

bound of BEF was 1 while that of the three PDFs was 0. To

resolve this issue and avoid specifying complex truncated

PDFs, the BEF values were subtracted by 1 prior to anal-

ysis. Shifting the lower bound of BEF to 0 did not affect

the shape of its frequency distribution. The model fitting

showed that model convergence was achieved for 8 of the 9

combinations, except the Weibull PDF and RSR combi-

nation. Hence, RSR was only fitted with the Gamma and

Log-normal PDFs. The WinBUGS codes along with the

data used for analyses are made available in the Supple-

mentary Material (S1–S3; Supplementary Material).

The median, 2.5 and 97.5 % sample quantiles of the

posterior mean and variance of a biomass factor were

reported for the eight combinations. Comparison of fit

between PDFs for a biomass factor was based on: (1)

deviance information criterion (DIC, Spiegelhalter et al.

2002), (2) Kolmogorov–Smirnov test, and (3) Q–Q plot.

The DIC was analogous to Akaike information criterion

(AIC) with smaller values indicating better fit. The

Kolmogorov–Smirnov test compared the fit between the

distributions of the observed biomass factor values and that

of a fitted PDF from posterior median parameters associ-

ated with the PDF. The null hypothesis of the test was no

difference between the two, and significance level was set

at 0.05. Finally, the Q–Q plot was constructed by plotting

the quantiles of the observed biomass factor values on the

horizontal axis against the quantiles from a fitted PDF on

the vertical axis. For a good fit, the plotted quantiles would

fall on line of slope 1:1.

Results

Biomass conversion and expansion factor (BCEF)

The median posterior mean BCEF across all publications

estimated by Gamma, Log-normal and Weibull PDFs were

1.003, 1.016 and 0.937, respectively (Table 2). Although

the values appeared to be different, the 95 % credible

intervals (range in 2.5 and 97.5 % sample quantiles)

showed that the difference was insignificant (Table 2). The

goodness-of-fit statistics suggested that Gamma PDF had

the best fit followed by Log-normal and Weibull PDFs. The

DIC for the fitted Gamma PDF was lowest (45.17) while

that of the Weibull PDF was highest (48.84, Table 2). The

Kolmogorov–Smirnov test suggested that all PDFs fitted

the observed BCEF distribution adequately with Gamma

PDF having the best fit (p value = 0.933, Table 2). This

was supported by the fitted PDF curves overlaying the

observed BCEF distribution (Fig. 2a).

The diagnostic plots suggested that the fits of the

Gamma and Log-normal PDFs were comparable while that

of the Weibull PDF was poorer (Fig. 3a, b, c). The Q–Q

plot of the Gamma PDF indicated that the fitted PDF could

not adequately capture the longer right tail of the observed

BCEF distribution, i.e., quantiles were below the 1:1 line

for BCEF larger than 1.5 (Fig. 3a). On the other hand, the

fitted Log-normal PDF performed better at the right tail but

slightly underestimated when BCEF was between 1.0 and

1.5 (Fig. 3b). The Weibull PDF overestimated BCEF when

its value was less than 0.8 and greater than 1.5 (Fig. 3c),

which was also supported by the fitted Weibull curve over

the BCEF frequency distribution (Fig. 2a).

Posterior estimate of BCEF varied greatly from publi-

cation to publication for all PDFs (Fig. 3a, b, c). The

estimate could be twice as large depending on the publi-

cation, with values ranging from 0.6 to 1.5. Most estimates

were either equal to or larger than the posterior mean

estimate across all publications. The width of the 95 %

credible intervals also depended on the publications.

Median, 2.5 and 97.5 % sample quantiles of
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hyperparameters for each of the three fitted PDFs are

presented in Table S2 (Supplementary Material).

Biomass expansion factor (BEF)

The median posterior mean BEF across all publications

estimated by Gamma, Log-normal and Weibull PDFs were

1.387, 1.414 and 1.332, respectively (Table 2). The 95 %

credible intervals showed that the differences in the median

posterior means were insignificant (Table 2). The good-

ness-of-fit statistics suggested that the Log-normal PDF

had the best fit to the observed BEF distribution

(DIC = -13.20 and p value = 0.132, Table 2) while the

fit of the Weibull PDF was considerably poorer

Table 2 Median posterior

mean and variance of the three

biomass factors across all

publications with corresponding

2.5 and 97.5 % sample quantiles

in parenthesis for each PDF

PDF BCEF BEFa R

Gamma

Posterior mean 1.003 (0.786, 1.236) 1.387 (1.277, 1.513) 0.217 (0.077, 0.564)

Posterior variance 0.125 (0.065, 0.231) 0.025 (0.011, 0.058) 0.001 (0.0002, 0.007)

DIC 45.17 -15.91 -103.10

p valueb 0.933 0.030* 0.012*

Log-normal

Posterior mean 1.016 (0.800, 1.299) 1.414 (1.304, 1.560) 0.260 (0.200, 0.335)

Posterior variance 0.160 (0.079, 0.343) 0.038 (0.016, 0.106) 0.021 (0.010, 0.049)

DIC 46.85 -13.20 -60.68

p valueb 0.841 0.132 0.016*

Weibull

Posterior mean 0.937 (0.710, 1.118) 1.332 (1.231, 1.438) nac

Posterior variance 0.114 (0.052, 0.227) 0.012 (0.004, 0.031) na

DIC 48.84 -31.51 na

p valueb 0.617 0.002* na

* p value\0.05 was indicated
a BEF was expressed in its original scale
b Kolmogorov–Smirnov test
c Weibull model failed to converge for RSR

Fig. 3 Q–Q plots for the combinations of the three biomass factors and three PDFs. The three biomass factors are BCEF (a, b, c), BEF (d, e,
f) and RSR (g, h), and the three PDFs are Gamma (a, d, g), Log-normal (b, e, h) and Weibull (c, f). The gray line depicts the 1:1 line
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(DIC = -31.51 and p value = 0.002, Table 2). The

Gamma PDF had an intermediate fit but the Kolmogorov–

Smirnov test showed significant difference between the

fitted PDF and the observed BEF distribution (p

value = 0.030, Table 2).

The diagnostic plots showed a consistent result that the

three PDFs fitted poorly to the right tail of the observed

BEF distribution (Fig. 3d, e, f). For the Gamma and Log-

normal PDFs, the Q–Q plots indicated overestimation for

BEF greater than 1.5 with the quantiles from the fitted PDF

lower than expected (Fig. 3d, e). Lastly, the Q–Q plot

indicated a poor fit of the Weibull PDF such that the

quantiles were smaller than expected for most BEF values

(Fig. 3f). Furthermore, the peak of the fitted curve over the

BE frequency distribution was beyond the scale (Fig. 2b).

Posterior estimates of BEF showed little variation

among publications for all PDFs except for two publica-

tions (Fig. 4e, f, g). Furthermore, most estimates approa-

ched the posterior mean estimate across all publications.

The width of 95 % credible intervals was generally quite

similar among the posterior estimates of BEF by publica-

tion. Median, 2.5 and 97.5 % sample quantiles of hyper-

parameters for each of three fitted PDFs are presented in

Table S3 (Supplementary Material).

Root-to-shoot ratio (RSR)

The median posterior means for RSR across all publica-

tions were 0.217 and 0.260 for Gamma and Log-normal

PDFs, respectively (Table 2). The 95 % credible interval of

the Gamma PDF was extremely wide, even covering the

95 % credible interval of the Log-normal PDF (Table 2).

This suggested that the estimate of the Gamma PDF was

highly uncertain.

The goodness-of-fit statistics suggested that neither PDF

fit the observed RSR distribution well, but the Log-normal

PDF had a better fit (Table 2). DIC from the Gamma PDF

was almost twice that of the Log-normal PDF (-103.10

and -60.68, respectively, Table 2). The Kolmogorov–

Smirnov test showed the fits of both PDFs were similar (p

values = 0.012 and 0.016, respectively, Table 2).

The results from Q–Q plots were in agreement with the

test statistics (Fig. 3g, h). Neither PDF generally yielded a

good fit with observed RSR values greater than 0.2, but the

lack of fit differed slightly between them. The Gamma PDF

underestimated the quantiles of RSR values greater than

0.2 (Fig. 3g). In contrast, the Log-normal PDF overesti-

mated the quantiles for values between 0.2 and 0.5 but

behaved similarly to the Gamma PDF for values greater 0.5

(Fig. 3h).

Posterior estimates of RSR by publications differed

between the Gamma and Log-normal PDFs (Fig. 4g, h).

For the Gamma PDF, the median posterior estimates for

three publications were significantly or nearly significantly

larger than those of the other publications (Fig. 4g). Fur-

thermore, the 95 % credible interval was highly variable

among publications. On the contrary, the median posterior

estimates and 95 % credible intervals were similar among

the publications for the Log-normal PDF (Fig. 4h). Med-

ian, 2.5 and 97.5 % sample quantiles of hyperparameters

for each of two fitted PDFs are presented in Table S4

(Supplementary Material).

Discussion

The choice of the most suitable PDF for a biomass factor

depends on quantitative and qualitative evaluations. For

BCEF, the fit of the Gamma and Log-normal PDFs was

comparable, but we favored the Log-normal PDF because

it had a better fit to the right tail of the observed BCEF

distribution. The likelihood of the observed large BCEF

values (i.e., greater than 1.5) being outliers was lowered

due to the predefined set of criteria for selection of publi-

cations. These values likely represented specific Q. mon-

golica forest stands as part of a larger population in the

region, e.g., a young and dense forest stand with high

amount of non-commercial tree components relative to

stem volume. Thus, a PDF that could capture these values

would be preferable. However, it should be noted that the

Log-normal PDF performed less than ideally for BCEF

values between 1.0 and 1.5, which was the price for cap-

turing the long right tail of the observed distribution. This

perhaps caused the goodness-of-fit statistics to be lower for

the Log-normal PDF than for the Gamma PDF.

The Log-normal PDF was also recommended for BEF.

The goodness-of-fit statistics and the qualitative Q–Q plots

supported the choice of the Log-normal PDF. Nonetheless,

the lack of fit was apparent for BEF values greater than 1.5

due to higher frequency of these values than expected

under the Log-normal PDF. The lack of fit, which was

consistent among the three PDFs, suggests that the

observed BEF distribution may be a mixture of multiple

PDFs. If so, two sub-populations of BEF might be present

with one sub-population peaking around BEF of 1.2 and

another sub-population peaking at 1.8. The two sub-pop-

ulations might represent different Q. mongolica stand

structures on the landscape with the former group having

smaller non-commercial tree component biomass than the

latter group relative to stem biomass. A finite mixture

model might be more appropriate for modeling a distri-

bution with sub-populations. A finite mixture model mixes

a number of PDFs to generate a model that is flexible in

accommodating a variety of random phenomena

(McLachlan and Peel 2000). For BEF, it could be a mixture

of two Normal PDFs to represent the two sub-populations
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of Q. mongolica forests. Specification of a finite mixture

model is considerably more complex, and to the best of our

knowledge, it has not been attempted for modeling biomass

factors.

For RSR, we recommend the Log-normal PDF because

it performed better in comparison to the Gamma PDF

despite the poor fit indicated by the goodness-of-fit statis-

tics and diagnostic plots. The lack of fit was due to the

heavy-tailed property of the observed RSR distribution,

i.e., extreme positive skew with large RSR values.

Uncertainty associated with estimating root biomass is high

partly due to the difficulty of excavating and accurately

measuring root systems. Undoubtedly, this uncertainty

contributes to the large variation in the observed RSR

distribution. RSR greater than 1.0 implied that root bio-

mass is larger than above-ground biomass; thus, it could be

that these values are outliers. However with little research

on Q. mongolica root systems, this claim is inconclusive.

Heavy-tailed PDF specifications such as the Pareto PDF are

alternative models for the observed RSR distribution (Falk

et al. 2010), but their application in modeling biomass

factors is limited.

This study accounted for variation between and within

publications by specifying publication as a nesting factor in

a multilevel model. This strategy effectively accounted for

causes of uncertainty specific to a publication such as

conditions at study sites and methods of field measurement,

and its effect is similar to blocking in experimental design.

As a result, the precision of estimates of a biomass factor

by publications and across all publications would be

higher. The posterior mean estimates of biomass factors

across all publications from the meta-analysis have a wider

scope of inference and could be applied for estimating

carbon flux of Q. mongolica forests on a regional level.

Furthermore, the recommended PDFs and associated pos-

terior parameter estimates of the biomass factors could be

used in the Monte Carlo simulation approach to uncertainty

analysis as recommended by IPCC (2006a).

Priors are important components in Bayesian analysis.

They are updated with newly collected information to

derive posterior inferences that reflect both current and past

knowledge. To take advantage of this feature, informative

priors are often desirable. In this study, non-informative

priors were applied as the analyses was unprecedented for

Q. mongolica forests in South Korea. One could attempt to

derive potential informative priors under certain assump-

tions. For example, informative priors can be derived from

other Quercus species under the assumption that tree spe-

cies with the same genus share similar life histories, tree

form, allometry, and survival strategies. Furthermore, any

future study attempts to refine estimation of regional bio-

mass factors for Q. mongolica forests using the Bayesian

approach could utilize the results from this study to con-

struct informative prior distributions. In a similar manner,

Fig. 4 Posterior estimates of the three biomass factors for each

publication under the three PDFs. The biomass factors are BCEF (a,
b, c), BEF (d, e, f) and RSR (g, h), and the three PDFs are Gamma (a,
d, g), Log-normal (b, e, h) and Weibull (c, f). A black dot corresponds

to a publication depicting median posterior estimate of a biomass

factor. The horizontal line depicting the 95 % credible interval (range

in 2.5 and 97.5 % sample quantiles)
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Li et al. (2012) set the estimated posterior distributions as

new priors to predict local parameters for a new dataset

when modeling the tree height-age relationship for balsam

fir in eastern Maine, USA.

Each PDF captures different aspects of the distribution

of a biomass factor. For example, the model fit of the

Gamma and Log-normal PDFs was comparable for BCEF,

but the Log-normal PDF better captured the right tail of the

distribution. Rather than having to choose the best fit

model based on a set of criteria, one could use the Bayesian

model average (BMA) method that offers a way to com-

bine different distinct models into a single model (Zhang

et al. 2014). Zhang et al. (2014) combined stand-level, tree-

level and distribution models via BMA to predict stand

basal area for even-aged Chinese fir plantations in southern

China. Picard et al. (2012) combined multiple allometric

equations into a single predictive model through BMA to

predict tree above-ground biomass in tropical moist forests.

The potential application of BMA to develop regional

biomass factors is promising, and it requires further study.

Kwon and Lee (2006a) showed that biomass production of

Q.mongolica forests depended on elevation but not on aspect.

Therefore, biomass factors could be related to environmental

factors and stand structures through regression models. This

approachwould further expand the scope of inference because

biomass factors could then be predicted from any forest stands

with measured predictors. A generalized linear mixed model

(GLMM) would be suitable for this approach. GLMM

requires specification of an appropriate PDF and random

effects for a biomass factor. The recommended choice of PDF

from this study and using publication as a nesting factor could

be a starting point for building theGLMM. In short, thismeta-

analysis study has expanded the applicability of the findings

reported in earlier studies, and the developed statistical model

for the meta-analysis could be applied similarly to other tree

species in the country.
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